An effective Chabauty–Kim theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Weierstrass Division Theorem

We prove an effective Weierstrass Division Theorem for algebraic restricted power series with p-adic coefficients. The complexity of such power series is measured using a certain height function on the algebraic closure of the field of rational functions over Q. The paper includes a construction of this height function, following an idea of Kani. We apply the effective Weierstrass Division Theo...

متن کامل

An Effective Compactness Theorem for Coxeter Groups

Through highly non-constructive methods, works by Bestvina, Culler, Feighn, Morgan, Rips, Shalen, and Thurston show that if a finitely presented group does not split over a virtually solvable subgroup, then the space of its discrete and faithful actions on Hn, modulo conjugation, is compact for all dimensions. Although this implies that the space of hyperbolic structures of such groups has fini...

متن کامل

Effective Differential Lüroth's Theorem

This paper focuses on effectivity aspects of the Lüroth’s theorem in differential fields. Let F be a differential field of characteristic 0 and F〈u〉 be the field of differential rational functions generated by a single indeterminate u. Let be given non constant rational functions v1, . . . , vn ∈ F〈u〉 generating a subfield G ⊆ F〈u〉. The differential Lüroth’s theorem proved by Ritt in 1932 state...

متن کامل

On an Effective Variation of Kronecker's Approximation Theorem

Let Λ ⊂ Rn be an algebraic lattice, coming from a projective module over the ring of integers of a number field K. Let Z ⊂ Rn be the zero locus of a finite collection of polynomials such that Λ * Z or a finite union of proper full-rank sublattices of Λ. Let K1 be the number field generated over K by coordinates of vectors in Λ, and let L1, . . . , Lt be linear forms in n variables with algebrai...

متن کامل

An Effective Tietze-Urysohn Theorem for QCB-Spaces

The Tietze-Urysohn Theorem states that every continuous real-valued function defined on a closed subspace of a normal space can be extended to a continuous function on the whole space. We prove an effective version of this theorem in the Type Two Model of Effectivity (TTE). Moreover, we introduce for qcb-spaces a slightly weaker notion of normality than the classical one and show that this prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Compositio Mathematica

سال: 2019

ISSN: 0010-437X,1570-5846

DOI: 10.1112/s0010437x19007243